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Abstract

The static and dynamic indentation of structural elements such as beams and plates continue to be intriguing

problems, especially for scenarios where large area contacts are expected to occur. Standard methods of indentation

analyses use a beam theory solution to obtain an overall load–displacement relationship and then a Hertzian contact

solution to calculate local stresses under the indenter. However, these techniques are only applicable in a fairly limited

class of problems: the stress distribution in the contact region will differ significantly from a Hertzian one when the

contact length exceeds the thickness of the beam. The indentation models developed herein are improvements over

existing GLOBAL/LOCAL models for static and dynamic indentation of cantilever beams. Maximum contact stresses,

beam displacements, and contact force time histories are obtained and compared with the predictions of current static

and dynamic indentation models. The validity of the solutions presented herein is further assessed by comparing the

results obtained to the predictions of modified beam theory solutions. � 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Static indentation; Non-Hertzian contact; Low velocity impact; Cantilever beam; GLOBAL/LOCAL

1. Introduction

In this paper, we present improved solutions to the frictionless static and dynamic cylindrical indentation
problems for a cantilever beam of length L and thickness h (see Fig. 1). Such configurations can serve as
first-order models for gear interaction or for turbine blade and hammer impact problems. Standard
methods of static and dynamic indentation analyses use a beam theory solution to obtain an overall load–
displacement relationship and then a Hertzian contact solution to calculate local stresses under the ind-
enter. However, previous modeling efforts have shown that the stress distribution in the contact region will
differ significantly from a Hertzian one when the contact length exceeds the thickness of the beam. In such
cases, point contact can no longer be assumed and Hertzian relations are not valid.

While the dynamic indentation problem (i.e. the low velocity impact problem) for a cantilever beam has
yet to be solved, static problems of this type were solved previously by Keer and Schonberg (1986a,b) using a
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GLOBAL/LOCALapproach that superposed beam theory and elasticity expressions. The technique developed
was subsequently modified to include beam rotation effects under the indenter by Zhou and Schonberg (1995).
However, these procedures used an approximate solution (instead of an elasticity solution) to establish the
load–displacement relationship at the contact site. As a result, because of the way in which they were con-
structed, these models are incapable of accurately predicting the stress fields inside the finite layer.

In the first part of this paper we present a static indentation model for cantilever beams that is an
improvement of current GLOBAL/LOCAL models because it uses a layer solution that is a true elasticity
solution to describe the load–displacement relationship at the contact site. Additionally, in a manner
similar to Zhou and Schonberg (1995), the rotation of the beam under the indenter is included in the mixed
boundary conditions at the contact site. Maximum contact stress values are obtained and compared with
the predictions of previously developed GLOBAL/LOCAL static indentation models. The validity of the
solutions presented is assessed by comparing the results obtained to the predictions of modified beam
theory solutions.

In the second part of this paper, we present a new low velocity impact model for cantilever beams. In this
model, the static elasticity solution for a finite elastic layer is merged with a dynamic beam theory solution.
Using the composite solution to match boundary conditions leads to a Volterra integral equation of the
second kind that is solved incrementally for the unknown pressure and contact length as functions of time.
The validity of the solution technique presented is again assessed by comparing its predictions against those
of dynamic beam theory solutions.

2. Generalized elasticity solution for a finite layer

The first step in developing the static and dynamic indentation models is to obtain the solution for a finite
elastic layer of thickness h and length L that is subjected to an arbitrary upper surface pressure distribution
(see again Fig. 1). In subsequent sections, appropriate end conditions are applied to this solution to obtain

Fig. 1. Indentation of a cantilever beam.
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the elasticity solutions for the static and dynamic indentation of a cantilever beam. The required solution is
achieved by the superposition of an elasticity solution for an infinite layer having a normal load on its upper
surface and zero load on its lower surface (see, e.g., Keer and Miller, 1983) and an elasticity solution for a
finite layer subjected to asymmetric bending obtained from Airy stress function solutions for asymmetric
bending and pure shear (see Zhou and Schonberg, 1995). The final solution is written in terms of two unequal
end moments M0 and M1 that are applied at x ¼ �L0 and at x ¼ L1 ¼ L� L0, respectively, and three (as yet)
unknown constants a0, b0, and a1 and is presented in Zhou and Schonberg (2001). It is referred to as the
generalized elasticity solution for the finite layer.

3. Static indentation of a cantilever beam

The mixed boundary value problem to be solved in this section is that of a cantilevered elastic finite
length layer of thickness h and length L that is indented by a cylindrical punch on its upper surface (see
Figs. 1 and 2). The solution of the problem is achieved by application of the mixed boundary conditions at
contact site and the end support conditions to the generalized elasticity solution discussed in the preceding
section. As in Zhou and Schonberg (1995), the displacement boundary condition at contact site is written as
follows:

uyðx; 0Þ ¼ D þ h0x�
x2

2R
xj j < c ð1Þ

where D and h0 are the beam upper surface displacement and rotation under the indenter. The end support
conditions that need to be satisfied are zero slope and displacement at x ¼ �L0 and zero shear and moment
at x ¼ L1 ¼ L� L0.

By applying these end support conditions to the generalized elasticity solution, we obtain a system of
equations for the quantities M0, M1, a0, and a1 in terms of unknown functions ESðnÞ and EAðnÞ. These

Fig. 2. Geometric parameters at the contact site.
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functions are determined by applying the boundary condition at the contact site given by Eq. (1) to the
generalized elasticity solution presented in the preceding section. Following established procedures, we
arrive at the following governing equations for the static indentation of a cantilever beam in terms of ESðnÞ
and EAðnÞ:

� 1� m
l

Z 1

0

EAðnÞ½1� cosðnxÞ	
b2 � sh2b

ðb þ shbchbÞdn �M1 �M0

2DL
x2 ¼ 0 ð2Þ

� 1� m
l

Z 1

0

ESðnÞ sinðnxÞ
b2 � sh2b

ðb þ shbchbÞdn � x
D

M0

�
þM1 �M0

L
L0

�
¼ � x

R
ð3Þ

where D ¼ lh3=6ð1� mÞ. Eqs. (2) and (3) are coupled Fredholm integral equations of the first kind and as
such their solutions are ill conditioned. To facilitate the numerical treatment of this indentation problem,
the integral transform method developed by Keer and Miller (1983) is used to convert Eqs. (2) and (3) into
the following two coupled Fredholm integral equations of the second kind (whose solutions are much more
stable):

h3

6
wðxÞ þ

Z c

0

wðtÞK1ðx; tÞdt þ
Z c

0

/ðtÞK2ðx; tÞdt ¼ �Dx
R

ð4Þ

h3

6
/ðxÞ þ h3

6

Z x

0

/ðtÞ
t

dt þ
Z c

0

wðtÞK3ðx; tÞdt þ
Z c

0

/ðtÞK4ðx; tÞdt ¼ 0 ð5Þ

where

ESðnÞ ¼
Z c

0

wðtÞJ0ðntÞdt ð6Þ

EAðnÞ ¼
Z c

0

/ðtÞJ1ðntÞdt ð7Þ

and the kernels K1 through K4 are given as follows:

K1ðx; tÞ ¼ �
Z 1

0

h3

6

b þ shbchb

b2 � sh2b

��
þ 1

�
nxJ0ðnxÞ þ

x

n2
cosðnL1Þ

�
J0ðntÞdn � p

2
xL1 ð8Þ

K2ðx; tÞ ¼ � p
4
xt ð9Þ

K3ðx; tÞ ¼
3p
8
x2 ð10Þ

K4ðx; tÞ ¼
h3

6

Z 1

0

b þ shbchb

b2 � sh2b

�
þ 1

�
½J0ðnxÞ � nxJ1ðnxÞ � 1	J1ðntÞdn ð11Þ

where shb ¼ sinh b and chb ¼ cosh b.
Once Eqs. (4) and (5) are solved for wðxÞ and /ðxÞ, all necessary physical quantities may be calculated.

For example, the displacement under the indenter, i.e., D ¼ uy(0,0), is given in terms of wðxÞ and /ðxÞ by the
following expression:

D ¼
Z c

0

wðtÞK5ðtÞdt þ
Z c

0

/ðtÞK6ðtÞdt ð12Þ
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where

K5ðtÞ ¼
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While Eq. (14) is identical to the corresponding equation in Zhou and Schonberg (1995), Eq. (13) has an

additional term within the second set of brackets. This extra term is due to the application of the gener-
alized elasticity solution for �hh developed herein. Additionally, the average slope of the beam �hhðxÞ is found to
be given by the following expression:

�hhðx; xj j6 cÞ ¼
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To assess the validity of the elasticity solution presented herein, its predictions for beam displacement
and rotation under the indenter are compared with the predictions of a beam theory solution that uses as
input the contact pressure distribution generated by the elasticity solution developed herein. Such beam
theory expressions for displacement and rotation are written as follows:

DB ¼ L2
0

6D

Z c

�c
pðsÞð2L0 þ 3sÞds� 1

6D

Z 0

�c
s3pðsÞds ð18Þ

hBðxÞ ¼
1

2D

Z c

�c
pðsÞðL0 þ sÞ2 ds� 1

2D

Z c

x
pðsÞðx� sÞ2 ds ð19Þ

where pðsÞ ¼ �ryyðs; 0Þ is the contact pressure distribution forthcoming as part of the solution to the static
indentation problem.

3.1. Results and discussion

Solutions to the static indentation problem are obtained for c=h ¼ 0:2, 0.5, and 1.0, L=h ¼ 10 and 20,
and for each L=h, L0=L ¼ 0:25, 0.5 and 0.75. Of particular interest are the results obtained for beam dis-
placement and rotation. These results are presented in Table 1 and discussed in detail in the following
paragraphs.
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If we compare the displacement and rotation predictions of the elasticity solution developed herein and
the predictions of the beam theory solution given, we see that the two solutions agree very well. This
agreement improves for displacement and rotation as L0=L increases, for displacement as c=h decreases, and
for rotation as c=h increases. This can be explained by the following considerations. First, as L0=L increases,
the effects of shear deformation on beam response become negligible. While the elasticity solution incor-
porates those effects, the beam theory solution does not. Therefore, these two solutions will match more
closely for indenter locations that result in minimal shear deformations. Second, for displacements, as c=h
decreases the local effects of beam upper surface deformation become negligible. Again, while the elasticity
solution incorporates those effects, the beam theory solution does not. Therefore, these two solutions will
match more closely in displacement prediction for smaller c=h values. Finally, for rotations, c=h increases,
the local effects of indenter curvature on beam upper surface deformation become negligible. While the
elasticity solution incorporates those effects, the beam theory solution does not. Therefore, these two so-
lutions will match more closely in rotation prediction for larger c=h values.

Table 1 also shows a comparison between the displacement predictions of the new model developed
herein, which includes second-order shear effects, and the displacement predictions obtained by Zhou and
Schonberg (1995), which did not. We see that for small values of c=h the two solutions agree quite well.
However, for c=hP 1 and for small values of L0=L the two solutions differ noticeably. This is again ex-
plained by noting that as c=h decreases and L0=L increases, the shear effects of cantilever beam become
negligible. While the current model incorporates those effects, the previous model does not. Therefore, these
two models will match more closely for smaller contact area and indenter locations that result in minimal
shear effects.

4. Low velocity impact of a cantilever beam

In this section we examine the normal low velocity impact of a frictionless rigid cylindrical projectile on
an isotropic cantilever beam. The geometry of the problem is shown in Fig. 2. Only low velocity impact is
considered in order to avoid complications that may result from high velocity impact, such as penetration

Table 1

Non-dimensional displacement and rotation comparisons: new model, beam theory and old model (Zhou and Schonberg, 1995)

L=h L0=L ¼ 0:25 L0=L ¼ 0:50 L0=L ¼ 0:75 c=h

New

model

Beam

theory

Old

model

New

model

Beam

theory

Old

model

New

model

Beam

theory

Old

model

10 Displacement 2.0 2.0 2.0 16.1 16.1 16.1 54.3 54.3 54.3 0.2

15.5 15.7 15.6 126.4 126.7 126.6 428.6 429.2 429.2 0.5

365.3 376.8 378.4 3356.5 3373.7 3374.5 11782.9 11805.8 11784.0 1.0

10 Rotation 1.2 1.2 – 4.8 4.8 – 10.9 10.9 – 0.2

9.4 9.4 – 38.0 37.9 – 85.7 85.7 – 0.5

214.6 217.6 – 982.5 985.5 – 2312.9 2315.9 – 1.0

20 Displacement 16.0 16.1 16.1 128.7 128.7 128.7 434.3 434.5 434.4 0.2

126.4 126.7 126.4 1018.3 1019.1 1019.4 3444.2 3445.3 3435.1 0.5

3300.0 3317.2 3473.6 28458.6 28487.0 28669.8 97802.3 97842.0 98185.0 1.0

20 Rotation 4.8 4.8 – 19.3 19.3 – 43.5 43.4 – 0.2

38.0 37.9 – 152.7 152.6 – 344.2 344.1 – 0.5

966.0 969.0 – 4206.0 4209.0 – 9679.4 9682.3 – 1.0
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or puncture. The constraints imposed on the problem ensure that the projectile will rebound along the
vertical line defining its incoming trajectory. As such, it can be argued that the physical problem being
modeled is that of a rotating hammer with a cylindrical nose impacting a cantilever beam.

The development of the dynamic indentation problem being considered is based on that developed by
Zhou and Schonberg (1994), which is itself a modification of the low velocity impact models developed by
Keer and Lee (1985) and Schonberg et al. (1987). The idea behind the modifications proposed by Zhou and
Schonberg (1994) was that only the relative static beam upper-surface deformation with respect to the
dynamic beam deflection (rather that the total static beam upper-surface deformation) should be super-
posed on a dynamic beam theory solution to obtain the timevarying load–displacment relationship. This
modification was motivated by the fact that the dynamic beam theory solution defining beam displacement
consists of the time-dependent part of the beam response relative to an instantaneous static equilibrium
position and the static response of the beam that defines the instantaneous static equilibrium position at
current loading. The relative beam upper-surface deformation is extracted from the total static elastic layer
displacement solution by subtracting a static beam theory displacement solution from a static finite length
elastic layer displacement solution.

As a result, the formulation of the dynamic contact problem consists of three types of solutions: (1) a
static elastic finite layer solution, which is obtained by applying the beam support conditions to the gen-
eralized static elastic layer solution presented previously; (2) a dynamic solution, which is obtained from a
standard beam vibration analysis; and (3) a static beam theory solution, which is used to cancel out the
static part of the beam vibration solution that describes the instantaneous beam equilibrium position.
Superposition of the three solutions and the matching of boundary conditions lead to a Volterra integral
equation of the second kind. The unknown contact region and pressure distribution at each instant of time
are obtained using a technique developed by Ahmadi et al. (1983) for the solution of non-Hertzian contact
problems.

We note that in the case of symmetric impact or in the case of static indentation just considered, the
contact length can be taken to be symmetric with respect to the static contact center. However, in the case
of asymmetric impact now being considered, the two half-contact lengths are not necessarily symmetric and
are actually obtained as part of the solution to the impact problem. As such, in Fig. 2 and in the devel-
opment that follows, the total contact length is divided amongst two unequal contact lengths c1 and c2, one
on either side of the coordinate axis defining the impact trajectory.

4.1. Static elastic finite layer displacement solution

Following the procedure in Zhou and Schonberg (1994), we focus on deriving an expression for
transverse beam deflection that will serve as the basis for the governing equation of motion ultimately
obtained. By applying the end support conditions for a cantilever beam to the generalized elasticity for
a finite layer, we again obtain a system of equations that are used to solve for end moments and un-
known constants. After collecting terms and adjusting the asymptotic behavior of the kernel of the resulting
integrand, we obtain, after some simplification, the following expression for transverse displacement
uyðx; 0Þ:

uyðx; 0Þ ¼
1

pD

Z c2

c1

pðx0ÞKðx; x0Þdx0 � h3

6pD

Z c2

c1

pðx0Þ ln
x� x0


 


L0 þ x0

 !
dx0

þ L0 þ x
4D

LðL0 þ xÞðL1 � xÞ � 1

3
ðL0 þ xÞ2 þ ð1þ mÞh2

6ð1� mÞ

� � Z c2

c1

pðx0Þdx0 ð20Þ
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where

Kðx; x0Þ ¼
Z 1

0

(
� h3

6

b þ shbchb

b2 � sh2b

�
þ 1

�
cos½nðx� x0Þ	 � cos½nðL0 þ x0Þ	

n

þ ðL0 þ xÞh3
12ð1� mÞ

sin½nðL0 þ x0Þ	
b � shb

þ ðL0 þ xÞ2

2

cos½nðL1 � x0Þ	
n2

)
dn ð21Þ

4.2. Static beam theory displacement solution

Using elementary engineering mechanics, the beam theory solution for a cantilever beam subjected to an
arbitrary normal loading at its upper surface is written as follows:

uBy ðxÞ ¼
1

6D

Z c2

x
pðx0ÞðL0 þ xÞ2ð2L0 þ 3x0 � xÞdx0 þ 1

6D

Z x

c1

pðx0ÞðL0 þ x0Þ2ð2L0 þ 3x� x0Þdx0 ð22Þ

4.3. Dynamic beam theory displacement solution

By using a Laplace transform technique and a normal mode expansion (see, e.g., Graff, 1975), we find
that for the case of zero initial conditions the dynamic beam deflection is given by

uyðx; tÞ ¼
1

qh

X1
n¼1

YnðL0 þ xÞ
ab2

n

Z L

0

YnðL0 þ uÞdu
Z t

0

pðu; sÞ sin ab2
nðt � sÞds ð23Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=qh

p
, q is the mass density,

YnðxÞ ¼ Fn
chðbnxÞ � cosðbnxÞ
chðbnLÞ þ cosðbnLÞ

�
� shðbnxÞ � sinðbnxÞ
shðbnLÞ þ sinðbnLÞ

�
ð24Þ

and

Fn ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

Y 2
n ðxÞdx

s,
¼ chðbnLÞ þ cosðbnLÞffiffiffi

L
p ð25Þ

For a cantilever beam, the frequency equation is given as

cosðbnLÞchðbnLÞ ¼ �1 ð26Þ

4.4. Governing equation of motion

As discussed previously, the total dynamic displacement is given by the addition of Eqs. (20) and (23)
followed by the subtraction of Eq. (22) with the following result:
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uyðx; 0; tÞ ¼
1

pD

Z c2ðtÞ
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( )

þ 1
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pðx0; sÞ

X1
n¼1

YnðL0 þ xÞYnðL0 þ x0Þ
ab2

n

sin ab2
nðt � sÞdx0 ds ð27Þ

In the contact region we have

uyðx; 0; tÞ ¼ DðtÞ � x2

2R
c1ðtÞ < x < c2ðtÞ ð28Þ

where DðtÞ is the approach of the projectile (a function of time, as are the contact region boundaries c1 and
c2), and R is the radius of curvature of the projectile. An additional equation is obtained from Newton’s
equation of motion

mp

o2D
ot2

¼ �
Z c2ðtÞ

c1ðtÞ
pðx; tÞdx ð29Þ

where mp is the mass of the projectile per unit length. If the projectile has an initial velocity V, then Eq. (29)
can be integrated twice to yield

DðtÞ ¼ Vt � M
qhL

Z t

0

ðt � sÞ
Z c2ðsÞ

c1ðsÞ
pðx0; sÞdx0 ds ð30Þ

where M is the ratio of the mass of the beam to that of the projectile. Substituting Eqs. (27) and (30) into
Eq. (28) and rearranging terms yield the integral equation for the impact problem

1

pD

Z c2ðtÞ

c1ðtÞ
pðx0; tÞeKK ðx; x0Þdx0 þ 1

D

Z c2ðtÞ

c1ðtÞ
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Z t

0
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c1ðsÞ
pðx0; sÞNðx; x0; sÞdx0 ds

þ M
qhL

Z t

0

ðt � sÞ
Z c2ðsÞ

c1ðsÞ
pðx0; sÞdx0 ds ¼ Vt � x2=2R ð31Þ

where
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0

(
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�
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Lðx; x0Þ ¼ � h3

6pD

Z c2

c1

pðx0Þln
x� x0


 


L0 þ x0

 !
dx0

� 1

6D
ðL0 þ xÞ2ð2L0 þ 3x0 � xÞHðx0 � xÞHðx� x0Þ þ ðL0 þ x0Þ2ð2L0 þ 3x� x0ÞHðx� x0Þ
h i

ð33Þ

Nðx; x0; sÞ ¼
X1
n¼1

YnðL0 þ xÞYnðL0 þ x0Þ
ab2

n

sin ab2
nðt � sÞ ð34Þ

We note that the first term in Eq. (33) represents the local indentation behavior of the beam while the
second term allows only the static finite elastic layer solution to describe the instantaneous beam equilibrium
position. As observed previously by Zhou and Schonberg (1994), inclusion of this term significantly improves
the accuracy of the predictions of the original analytical model for center impact of a simply supported beam.

4.5. Elementary beam theory solution

An elementary beam theory analysis (Goldsmith, 1960) yields the following expressions for maximum
transverse displacement and impact duration:

uy;max ¼ V s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeM þ 1ÞM

p
ð35Þ

t0 ¼ ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeM þ 1Þ=M

p
ð36Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qhL=k

p
and V, M are as defined previously. For a cantilever beam, the values of e and k are

given as follows:

e ¼ 33

140

L0

L

� �
þ L0

36L

� �
3L
L0

�"
� 1

�3

� 8

#
ð37Þ

k ¼ 3D
L3
0

ð38Þ

4.6. Results and discussion

The material and geometric parameters used to evaluate our low velocity impact model are listed in Table
2. Solutions were obtained for cantilever end support conditions for three impact locations (L0=L ¼ 0:6, 0.4,

Table 2

Material and geometric parameters

Test set 1, L0=L ¼ 0:6 Test set 2, L0=L ¼ 0:4 Test set 3, L0=L ¼ 0:2

Material Castolite Castolite Castolite

E (N/m2) 4:827
 109 4:827
 109 4:827
 109

t 0.355 0.355 0.355

q (Kg/m3) 1212 1212 1212

R (cm) 1.93 1.93 1.93

L (cm) 12.70 12.70 12.70

L0 (cm) 7.62 5.08 2.54

h (cm) 1.93 1.93 1.93
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and 0.2), for two impact velocities (V ¼ 1, 5 m/s), and for three mass ratios (M ¼ 0:5, 1, 2). Highlights of the
results obtained in this parametric study are presented in Tables 3–5 and in Figs. 3 and 4, and are discussed
below in detail.

Table 3 shows that as M increases (corresponding to the situation of using the same beam but lighter
projectiles), the normal peak stresses under the indenter and maximum contact length decrease for all three
test sets. This is because when M < 1, that is, the projectile is more massive that the beam, the lighter beam
must transmit a much larger force to the heavier projectile during rebound in order to successfully reverse
its trajectory. This results in larger normal peak stresses and maximum contact lengths. It is also seen in
these tables that the maximum normal peak stresses and corresponding contact lengths increase signifi-
cantly and non-linearly when impact locations move toward the end support. This is because both the
effective transverse stiffness and the ‘‘whipping’’ effect of the beam increases significantly as the impact
location moves toward the end support.

Table 3

Maximum contact stresses and contact lengths

M Peak normal stress under the indenter (
107 Nm�2) Maximum contact length (mm)

Test set 1,

L0=L ¼ 0:6
Test set 2,

L0=L ¼ 0:4
Test set 3,

L0=L ¼ 0:2
Test set 1,

L0=L ¼ 0:6
Test set 2,

L0=L ¼ 0:4
Test set 3,

L0=L ¼ 0:2

V ¼ 1 m/s 0.5 5.139 5.302 6.893 0.711 0.762 1.016

1.0 4.317 4.501 5.680 0.610 0.610 0.813

2.0 3.883 4.357 4.831 0.559 0.610 0.711

V ¼ 5 m/s 0.5 10.935 11.521 15.559 1.524 1.626 2.235

1.0 9.860 10.279 12.854 1.372 1.473 1.829

2.0 8.816 9.955 10.928 1.270 1.372 1.575

Table 4

Maximum transverse displacement under the indenter (mm)

M Test set 1, L0=L ¼ 0:6 Test set 2, L0=L ¼ 0:4 Test set 3, L0=L ¼ 0:2

Elasticity Beam theory Elasticity Beam theory Elasticity Beam theory

V ¼ 1 m/s 0.5 0.423 0.415 0.217 0.176 0.059 0.034

1.0 0.312 0.253 0.129 0.098 0.032 0.017

2.0 0.189 0.145 0.083 0.053 0.021 0.009

V ¼ 5 m/s 0.5 2.100 2.212 1.096 0.881 0.291 0.169

1.0 1.552 1.263 0.660 0.492 0.162 0.087

2.0 0.948 0.725 0.410 0.263 0.108 0.044

Table 5

Duration of impact (
10�3 s)

M Test set 1, L0=L ¼ 0:6 Test set 2, L0=L ¼ 0:4 Test set 3, L0=L ¼ 0:2

Elasticity Beam theory Elasticity Beam theory Elasticity Beam theory

V ¼ 1 m/s 0.5 1.275 2.005 0.450 1.400 0.350 0.914

1.0 1.450 1.647 0.300 1.254 0.175 0.887

2.0 1.450 1.435 0.300 1.174 0.150 0.873

V ¼ 5 m/s 0.5 1.275 2.005 0.450 1.400 0.350 0.914

1.0 1.450 1.647 0.300 1.254 0.175 0.887

2.0 1.450 1.435 0.300 1.174 0.150 0.873
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Tables 4 and 5 show the maximum beam transverse displacement under indenter and the impact du-
ration as functions of mass ratio and impact velocity of the projectile as well as impact location. A com-
parison of the predictions of the model developed herein and the elementary beam theory model reveals
large discrepancies, especially for impact duration. This is because multiple impacts and early final sepa-
ration occur in cantilever beam impact case even when mass ratio is small. The discrepancies between the
two models for maximum transverse displacement increase when mass ratios increase: when mass ratios are
larger, smaller projectile mass leads to earlier final separation. In addition, the maximum transverse dis-
placement occurs when beam and projectile have separated. The discrepancies also increase when the
impact location moves toward the end support. This is also expected because the closer the impact location
moves toward the support, the stronger the ‘‘whipping’’ effect from the free end of the beam becomes. This
results in the large discrepancies in the maximum displacement that occur when the projectile and the beam
have separated. Because of this, it is apparent that the assumption of the elementary beam theory impact
model that the dynamic transverse displacement is geometrically similar to the static displacement curve is
no longer valid.

Table 4 also shows that trends of transverse displacement predictions for different impact locations are
similar in nature: maximum transverse displacements are found to increase as mass ratio decreases. A
similar trend is observed with respect to the dependence of maximum beam displacement and contact force
on impact velocity: the amplitudes are seen to be approximately proportional to the relative values of the
initial impact velocities. This is in agreement with elementary beam theory predictions and the numerical
results obtained by Schonberg et al. (1987). Finally, it is seen that for cantilever beam impact, the impact

Fig. 3. Contact pressure time history; L0=L ¼ 0:6, M ¼ 0:5, V ¼ 1 m/s.
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duration is again virtually independent of the initial impact velocity as was also shown previously in simply
supported and fixed–fixed beam impact cases by Schonberg et al.

It is also interesting to note in Table 5 that the closer the impact location moves toward the fixed end
support, the shorter the impact duration becomes. This is because when the impact location is closer to the
end support, the beam is less likely to catch the projectile for double impact during rebounding. This leads
to an earlier final separation. It is also noted that for impact locations close to the free end, the impact
duration does not increase monotonously as mass ratio decreases, which is contrary to beam theory pre-
dictions. This is because the ‘‘whipping’’ effects of the beam’s free end allow the beam to catch the projectile
for multiple impact during rebound. A large mass ratio (lighter projectile versus same beam) was found to
create as many as three impacts and thereby resulted in longer impact durations.

Figs. 3 and 4 show the normal contact stress distribution histories for M ¼ 0:5 and 1 for the impact
location L0=L ¼ 0:6. Evident in these figures is the receding contact phenomenon, which is characterized by
a moving contact center. This phenomenon is more evident for M ¼ 0:5 than for M ¼ 1 because for a
smaller mass ratio the dynamic contact is localized and centered about the impact location. Further ex-
amination and comparison of Figs. 3 and 4 reveals two additional features. First, both figures show final
separation occurs when the beam is below its initial horizontal position. Second, Fig. 3 shows double
impact while Fig. 4 shows a triple impact. The multiple impact phenomenon for cantilever beam can be
considered as a combined result of the beam’s transverse stiffness and the ‘‘whipping’’ effect of the free end.

Fig. 4. Contact pressure time history; L0=L ¼ 0:6, M ¼ 1:0, V ¼ 1 m/s.
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The beam’s low transverse stiffness allows smaller contact force to rebound the projectile while the
‘‘whipping’’ effect allows larger amplitude of beam displacement to catch the projectile during its re-
bounding course.

5. Summary and assessment

In the first part of this paper, the static cantilever beam indentation problem is reformulated and suc-
cessfully solved using a generalized elasticity solution and modified boundary conditions at the contact site
that include beam upper surface rotation effects. In the second part, the asymmetric low velocity cantilever
beam impact problem is also successfully reformulated and solved.

It would appear that the major limitation of the models presented herein is that their predictions of beam
response are valid only when the contact zone is sufficiently far away from end supports. Improvement in
the predictions of beam indentation and low velocity impact responses can be achieved by using a more
precise superposition solution in which the boundary conditions at end supports are satisfied in terms of
stresses instead of moments and shears. Ultimately, experimental validation and correlation are required to
assess the predictive accuracy of the models developed herein to facilitate their application to real word
problems (e.g., finding the ‘‘sweet spot’’ on a baseball bat) and to direct future research efforts in beam
contact and impact analysis.
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